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Abstract. Density functionals proposed in the literature for describing the behaviour of liquid helium at
T = 0 K are examined. In so doing, several properties of the ground states of free films of superfluid 4He
are calculated by using zero- and finite-range density functional theories and these results are compared to
that computed with Monte Carlo simulations. We mainly focus the attention on the energy per particle of
the slabs, the surface tension and the width of the liquid-vacuum interfaces, all as a function of the inverse
of coverage. The largest differences are found in the case of the surface widths.

PACS. 61.20.-p Structure of liquids – 67.70.+n Films (including physical adsorption) – 68.10.-m Fluid
surfaces and fluid-fluid interfaces

1 Introduction

During the last decade a great progress has been achieved
in understanding properties of inhomogeneous systems of
liquid 4He. A survey of examples of experimental and the-
oretical developments may be found, for instance, in the
proceedings of international symposia on quantum fluids
and solids published in [1–3].

As well-known, the ground-state energy of an interact-
ing N -body system of 4He atoms, immersed in an external
potential due to a substrate Usub(r), may be written as

Egs = − ~
2

2m

∫
dr
√
ρ(r)∇2

√
ρ(r) +

∫
dr ρ(r) ec(r)

+
∫

dr ρ(r)Usub(r), (1.1)

where ρ(r) is the one-body density. The first term on
the right-hand side is the quantum kinetic energy of the
helium particles of mass m. The second term represents
the interaction between the particles of the system, where
ec(r) is the correlation energy per particle depending on
the approach adopted for the theoretical description. We
shall come back to this point later on. The last term is the
interaction with the external field.
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The spatial particle distribution ρ(r) in the ground
state is determined by minimizing the total energy of the
system with respect to the density. This is usually ac-
complished by applying a variational procedure with the
constraint of a fixed particle number N , i.e.,

δ[Egs − µN ]
δ
√
ρ(r)

= 0. (1.2)

Here µ is the chemical potential and N is defined as

N =
∫

dr ρ(r). (1.3)

The variation of (1.2) leads to a Hartree like equation for
the square root of the one-body density[
− ~2

2m
∇2 + VH(r) + Usub(r)

]√
ρ(r) = µ

√
ρ(r), (1.4)

which also determines µ. Here VH(r) is a Hartree mean-
field potential given by the first functional derivative of
the total correlation energy Ec[ρ]

VH(r) =
δEc[ρ]
δρ(r)

=
δ

δρ(r)

∫
dr′ ρ(r′) ec(r′). (1.5)

There are mainly two different self-consistent micro-
scopic approaches to treat the correlation energy [4]. One
is an ab initio variational method based on the correlated
basis theory in conjunction with a perturbative treatment
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of the hypernetted chain expansion (CBF-HNC) [5–9].
In this procedure one starts from a bare two-body
helium-helium interaction (described either by a standard
Lennard-Jones (LJ) potential or by a more elaborated one
like that of Aziz et al. [10]) and solves self-consistently a
couple of Euler-Lagrange equations in order to obtain all
the quantities of interest. This theory has a “built in” con-
sistency test in the sense that the equations cease to have
solutions if the assumed geometry of the system under
consideration is unstable against infinitesimal density fluc-
tuations [5,7]. A widely used alternative procedure is of
semi-phenomenological nature, where one assumes a den-
sity functional (DF) for the correlation energy per parti-
cle in terms of ρ(r) and determines the introduced free
parameters by fitting properties of bulk 4He system [4].
In this case the ground-state configuration is also evalu-
ated self-consistently. Since the latter theories rely on phe-
nomenological inputs from uniform systems, the validity
of the extrapolation to inhomogeneous liquid must always
be carefully controlled. Moreover, this approach has not
any “built in” consistency test, the stability of the systems
must be examined by applying a criterion devised ad hoc.
On the other hand, the DF calculations are computation-
ally simpler than the CBF-HNC ones. It is important to
remark that, DF studies have predicted fascinating phe-
nomena like non-wetting of heavy-alkali metals by liquid
4He at zero absolute temperature [11].

A completely different ab initio procedure is based on
Monte Carlo (MC) techniques. Because of the relative
simplicity of the helium-helium interaction, helium sys-
tems can be accurately solved by MC algorithms. The re-
sults provided by simulations are usually accepted as exact
and can be used to test calculations performed with other
theories.

The aim of the present work is to check the accuracy
of DF theories by examining their predictions beyond the
bulk liquid. For this purpose, we shall compare the out-
puts of such approaches for inhomogeneous 4He systems
with results obtained from MC methods. In particular, we
shall focus our attention on free films with planar geom-
etry, for which Vallés and Schmidt [12] have carried out
detailed calculations. The films of this kind are invariant
in the x-y plane and present a structure along the z coor-
dinate. In fact, it has been demonstrated in [13,14] that
free slabs of 4He at T = 0 K are unstable and therefore do
not exist isolated in nature. However, these systems with
densities smaller than the equilibrium bulk density (see
Figs. 1 and 2 of [12]) may be associated with substruc-
tures as growing layers of adsorbed films (see for example
Fig. 8 of [9]). Therefore, it becomes important to test the
results provided by the DF theory for free films.

Monte Carlo simulations converge even though the an-
alyzed films are unstable. This is due to the fact that
in these procedures periodic boundary conditions are im-
posed on the x-y plane [12,15] which automatically stabi-
lize the calculated systems because the longest wavelength
is the size of the box. Since the instability of the systems
is in the limit of very-long wavelengths [13], it cannot be
detected by these MC algorithms. As in the case of DF ap-
proaches the test for stability should be done separately.

So that MC computations provide suitable results for our
purpose.

Several different proposals for the correlation energy
formulated in the DF theory are summarized in Section 2.
The treatment of the energetics for planar 4He systems
is provided in Section 3.2. Section 4 is devoted to report
numerical results and their analysis and discussion. The
final remarks are given in Section 5.

2 Density functionals

A well-known theorem due to Hohenberg and Kohn [16]
insures that the energy of a many-body system of interact-
ing particles can be written as a functional of the one-body
density. However, it does not provide a practical way of
constructing the functional. The main objective of theo-
retical considerations is a description of this functional.
Since the pioneering work of Saam and Ebner [17] sev-
eral successive proposals have been done for the structure
of a reasonable expression for the correlation energy. We
shall now outline the characteristics of extensively used
DF formalisms, and in a next section present the results
obtained for free slabs of 4He.

2.1 Skyrme-type density functional

The simplest DF successfully employed to interpret prop-
erties of 4He systems has been proposed by Stringari and
Treiner [18]. It is a zero-range correlation inspired in func-
tionals derived by using a phenomenological interaction of
Skyrme type [19], which have been extensively applied to
describe properties of atomic nuclei. The explicit form as-
sumed in [18] for the correlation energy per particle is

eSky
c (r) =

b4
2
ρ(r) +

c4
2
ργ4+1(r) + d4

| ∇ρ(r) |2
ρ(r)

· (2.1)

Here, the term proportional to b4 corresponds to an attrac-
tive two-body contact force which reflects the attractive
character of the interatomic potential at large distances.
The term in c4 is a repulsive, density-dependent contact
interaction which dominates at high densities. Finally the
term proportional to d4 reflects the repulsive interaction
at the surface. The phenomenological parameters b4, c4,
and γ4 have been fixed so as to reproduce known satura-
tion properties of the bulk liquid; while d4 is adjusted to
the surface tension.

For a uniform liquid of density ρ the energy per parti-
cle, eu, arising from functional (2.1) takes the form

eu =
E

N
=
b4
2
ρ+

c4
2
ργ4+1. (2.2)

Pressure and compressibility can be derived directly by
taking the first and second derivative of the energy

P = ρ2 ∂

∂ρ

(
E

N

)
=
b4
2
ρ2 +

γ4 + 1
2

c4 ρ
γ4+2, (2.3)

1
ρκv

=
∂P

∂ρ
= b4 ρ+

(γ4 + 1)(γ4 + 2)
2

c4 ρ
γ4+1. (2.4)
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Table 1. Parameters of the density functionals for the correlation energy per particle ec.

Functional b4 γ4 c4 d4 hOP bLJ Ref.

[K] [×107 K Å3(γ4+1)] [×103 K Å5] [Å] [Å]

Skyrme-DF −888.810 2.8 1.045 54 2.383 [18]
OP-NLDF −888.810 2.8 1.045 54 2.376 728 [24]
C-NLDF −888.810 2.8 1.045 54 2.376 728 20.00 [28]

b′4 c′4 c′′4 hOT αs ρ0s `

[K] [×104 K Å6] [×106 K Å9] [Å] [Å3] [Å−3] [Å]

OT-NLDF −718.990 −2.411 857 1.858 496 2.190 323 54.31 0.04 1 [31]

At equilibrium (where P = 0) the saturation observables,
i.e., the equilibrium density, the minimum energy per par-
ticle, and the compressibility quoted in Table II of [18]
are correctly reproduced with the set of parameters b4,
c4, and γ4 listed in Table 1. In order to determine d4,
the Hartree-like equation (1.4) has been solved for a free
semi-infinite system in [18]. For this purpose the external
field was set to zero, Usub(r) ≡ 0, and a planar symme-
try was imposed ρ(r) ≡ ρ(z), where z is the coordinate
normal to the free surface. In this case the equation (1.4)
becomes[

− ~
2

2m
d2

dz2
+ VH(z)

] √
ρ(z) = µ

√
ρ(z). (2.5)

The surface energy per unit area σs may be obtained by
multiplying this Hartree equation with d

√
ρ(z)/dz and

integrating twice by using the explicit form (A.2) for
VH(z) ≡ V Sky

H (z)

σs =
∫ ∞
−∞

dz

~2

m

(
d
√
ρ(z)

dz

)2

+ 2 d4

(
dρ(z)

dz

)2
 ·

(2.6)

The Hartree equation has been iterated until σs

given by (2.6) was equal to the experimental value
σexpt

s = 0.274 ± 0.003 K/Å2 taken from [20], yielding
d4 = 2.383 × 103 K Å5, which was also included in Ta-
ble 1. It can be readily verified that the evaluation of the
integral expressed in equation (2.6) by using this result for
d4 and the values of ρ(z) listed in Table III of [18] leads to
the imposed surface tension. It should be mentioned that,
as quoted in Table 2, a subsequent measurement [21] led
to σexpt

s = 0.2570±0.0004 K/Å2, but a very recent exper-
iment [22] yielded σexpt

s = 0.272±0.002 K/Å2 in complete
agreement with the oldest value of [20].

It has been shown that a zero-range force of Skyrme
type can provide a reasonable description of thermody-
namic properties of the liquid at zero temperature and
in the limit of zero momentum. However, in order to
describe other properties of the liquid, like the static
form factor or the excitation energy spectrum both as
a function of momentum, one has to go beyond this
limit.

Indeed, the presence of the gradient term implies
that the interaction is not really “pure” zero range.
Nonlocal terms like |∇ρ(r)|2 in (2.1), turn out to be
crucial for the description of inhomogeneous liquid he-
lium [18,23]. However, Clements et al. [9] pointed out
that this kind of gradients terms lead to divergen-
cies when three-dimensional systems approach a two-
dimensional geometry. Other current criticism posed
on zero-range Skyrme interaction is that it ignores
two major characteristics of the interatomic poten-
tial: (i) the asymptotic r−6 behaviour, and (ii) the
hard core repulsion at short distances. This led to
the introduction of more elaborated nonlocal den-
sity functional (NLDF) formalisms that overcome these
shortcomings.

2.2 Orsay-Paris nonlocal density functional

Effects of non-locality have been included in the DF in
a more realistic way by Dupont-Roc et al. [24]. These
authors have replaced the zero-range terms b4ρ(r)/2 and
c4ρ

γ4+1(r)/2 contributing to the functional (2.1) by non-
local generalizations of them and discarded the gradient
term d4|∇ρ(r)|2/ρ(r).

The first term of equation (2.1) was replaced by an
integrated two-body interaction

b4
2
ρ(r)→ 1

2

∫
dr′ ρ(r′)Vl(| r− r′ |). (2.7)

In this Orsay-Paris (OP) proposal, Vl(| r− r′ |) was taken
as the 4He-4He LJ potential screened in a simple way at
distances shorter than a characteristic distance hOP

V OP
l (r) =


4ε
[(σ
r

)12

−
(σ
r

)6
]

if r ≥ hOP,

V OP
l (hOP)

(
r

hOP

)4

if r < hOP,

(2.8)

with the standard de Boer-Michels [25] parameters, na-
mely, well depth ε = 10.22 K and hard core radius σ =
2.556 Å. In order to recover the correct results for bulk
liquid, the screening distance hOP was adjusted so that
the integral of V OP

l (r) over the whole three-dimensional
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Table 2. Experimental data and coefficients of the expansion for the energy per particle e together with the corresponding
reduced χ2 of each fit.

Data source e∞ σ∞ = a1/2 a2 γc × 103 a4 × 103 a5 × 106 Ref.

[K] [K/Å2] [K/Å4] [K/Å6] [K/Å8] [K/Å10]

Experiment
eB −7.15a [18]

Surface tension 0.274 ± 0.003 [20]
0.2570 ± 0.0004 [21]
0.272 ± 0.002 [22]

Theory
FHHb γ0

frf = −5.43 [24], PW
GFMC+VMC −7.12 ± 0.02 0.288 ± 0.012 −0.021± 0.007 +0.49± 0.42 [12], PWc

−7.111 ± 0.019 0.275 ± 0.013 −5.7± 5.8 +0.57± 0.94 PWd

−7.107 ± 0.020 0.270 ± 0.007 −3.52± 0.53 +0.224 ± 0.041 −0.8± 3.8 PWd

Skyrme-DF 0.274e [18]
−7.154 ± 0.009 0.2760 ± 0.0028 +0.09± 0.35 −0.137 ± 0.039 PW
−7.165 ± 0.008 0.2795 ± 0.0023 +0.09± 0.35 −0.244 ± 0.060 12.6 ± 2.9 PW

OP-NLDF 0.277f [24]
−7.14 ± 0.01 0.278 ± 0.002 −1.3± 0.2 [14]g

−7.153 ± 0.009 0.2803 ± 0.0027 −1.44± 0.33 +0.009 ± 0.036 PW
−7.157 ± 0.008 0.2815 ± 0.0022 −1.44± 0.33 −0.031 ± 0.057 4.8± 2.7 PW

C-NLDF 0.287 [30]h

−7.154 ± 0.009 0.2875 ± 0.0027 −1.51± 0.33 +0.007 ± 0.036 PW
−7.158 ± 0.008 0.2889 ± 0.0022 −1.51± 0.33 −0.037 ± 0.057 5.3± 2.7 PW

OT-NLDF 0.272i [31]
−7.153 ± 0.009 0.2737 ± 0.0028 −1.38± 0.36 +0.014 ± 0.038 PW
−7.155 ± 0.008 0.2745 ± 0.0023 −1.38± 0.36 −0.016 ± 0.060 3.8± 2.9 PW

a Bulk energy per particle quoted in Table II of reference [18] and used for fixing the parameters of all examined DFs, for
the error analysis we assumed that the uncertainty of this value is 0.01 K.
b Coefficient γc estimated by using the FHH approach as explained in text.
c Parameters of the fit of all GFMC+VMC data plotted in Figure 3 of reference [12] to equation (3.2) with a2 6= 0 and ak = 0
for k ≥ 4.
d Parameters of the fit of all GFMC+VMC data plotted in Figure 3 of reference [12] to the fifth-degree polynomial of
equation (4.3).
e Surface tension quoted in Table II of reference [18] and used therein to fix the parameter d4 of the Skyrme-DF.
f Surface tension evaluated in reference [24] for a rather thick slab by using the OP-NLDF approach.
g Parameters determined in reference [14] from a fit of OP-NLDF energy data to equation (4.3) with a2 = a4 = 0.
h Surface tension determined from the analysis of 4He droplets.
i Surface tension evaluated in reference [31] for a rather thick slab by using the OT-NLDF approach.

space be equal to the value of b4 given in Table 1

b4 =
∫

drV OP
l (r) =

32π
21

σ3ε

[
8
3

(
σ

hOP

)9

− 5
(

σ

hOP

)3
]
·

(2.9)

This procedure led to hOP = 2.376 728 Å, which is also
included in Table 1.

For replacing the second term of equation (2.1), it was
used a prescription similar to the “weighted density ap-
proximation” introduced in the studies of classical fluids
by Tarazona [26]

c4
2
ργ4+1(r)→ c4

2
[ρ̄(r)]γ4+1

. (2.10)

The ρ̄(r) is the “coarse-grained density” defined as the
straight average of ρ(r) over a sphere centered at r and

with a radius equal to the screening distance hOP

ρ̄(r) =
∫

dr′ ρ(r′)W(| r− r′ |), (2.11)

where W(| r− r′ |) is the normalized step function

W(| r− r′ |) =
3

4πh3
Θ(h− | r− r′ |)

=


3

4πh3
if | r− r′ |≤ h,

0 if | r− r′ |> h.

(2.12)

The OP-NLDF expression for the correlation energy
per particle suggested by Dupont-Roc and collaborators

eOP
c (r) =

1
2

∫
dr′ ρ(r′)V OP

l (| r− r′ |) +
c4
2

[ ρ̄(r) ]γ4+1,

(2.13)
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combines the simplicity of the zero-range one with the
possibility of obtaining a reasonable result for the surface
tension of the liquid without explicit inclusion of gradi-
ent terms in ec (see, e.g., the value σs = 0.277 K/Å2 of
equation (28) in [24]).

Finally, in this approach it is also interesting to look at
the prediction for the static response function χ(q, ω = 0)
of uniform 4He liquid at zero pressure given by

−χ−1(q) =
~2 q2

4m

+
ρ0

V

∫∫
dr dr′

δ2Ec[ρ]
δρ(r) δρ(r′)

e−i q·(r−r′)

=
~2 q2

4m
+ ρ0

∧
Vl(q)

+ (γ4 + 1)c4 ρ
γ4+1
0

[
∧
W(q) +

γ4

2
∧ 2

W (q)
]
,

(2.14)

where ρ0 = 0.021 836 Å−3 is the equilibrium density and

the functions
∧
f(q) are the Fourier transforms
∧
f(q) =

∫
dr f(| r |) e−i q·r. (2.15)

In particular, the Fourier transform ofW(| r− r′ |) yields

∧
W(q) =

∫
drW(| r− r′ |) e−i q·r

=
3
h q

j1(h q) =
3

h2q2

[
sin(h q)
h q

− cos(h q)
]
. (2.16)

The static polarizability of 4He, in units of its value at
zero momentum which is fixed by the compressibility of
the system −χ−1(q = 0) = 1/ρ0 κv = 27.2 K, is shown in
Figure 1 of [24] together with experimental data from [27].
The theoretical results reproduce approximately the mea-
sured values, except at the valley of the roton region
(q ' 2 Å−1).

2.3 Catalonia nonlocal density functional

An alternative finite-range DF has been built by Barranco
et al. [28] starting from the proposal of [24] and merely
changing the treatment of the hard core of the LJ po-
tential. Following the idea of Pines’ polarization poten-
tials [29], the authors of [28] suggested the interaction

V C
l (r) =


4ε
[(σ
r

)12

−
(σ
r

)6
]

if r ≥ σ,

bLJ

[
1−

( r
σ

)8
]

if r < σ,

(2.17)

where ε and σ are the standard de Boer-Michels parame-
ters. The height bLJ of the core is fixed so that the results
for the bulk liquid be recovered. In so doing, from

b4 =
∫

drV C
l (r) =

32 π
3

σ3

[
1
11
bLJ −

1
3
ε

]
, (2.18)

Fig. 1. (a) Screened portions of the Lennard-Jones poten-
tials as a function of the inter-particle distance. The full curve
indicates the common unscreened part of the potential. The
dashed curve shows the short-range sector adopted in the OP-
NLDF approach of [24]. The dot-dashed curve is the short-
range C-NLDF polarization potential introduced in [28]. For
the sake of comparison the Orsay-Trento screening of [31] is
also marked schematically by dotted lines. (b) Contributions

to ρ0

∧
Vl(q) evaluated by using equation (2.21) with the corre-

sponding screened potentials Vl(r ≤ σ) displayed in part (a).

the following relation was obtained

bLJ =
33
8

[
8
9
ε+

b4
4 π σ3

]
· (2.19)

Figure 1 shows the difference between the screening at
short-range of the potentials adopted in [24] and [28]. All
the remaining phenomenological parameters of this Cat-
alonia finite-range DF (C-NLDF) are the same as those of
the OP-NLDF. In the C-NLDF approach for the correla-
tion energy per particle reads

eC
c (r) =

1
2

∫
dr′ ρ(r′)V C

l (| r− r′ |) +
c4
2

[ ρ̄(r) ]γ4+1.

(2.20)

The distance hC = hOP is only used as the cut-off for the
determination of ρ̄(r).

The static polarizability of 4He obtained with the C-
NLDF approximation is shown in Figure 2 of [30] together
with the results of [24] and the experimental data of [27].
From this comparison one realizes that both OP- and C-
NLDF proposals provide similar results, this is due to fact

that the difference between contributions yielded to
∧
Vl(q)

by different screenings in Vl(r) for r ≤ σ, i.e.,

∧
V scr

l (q) =
4 π
q

∫ σ

0

dr r Vl(r) sin(qr), (2.21)

is not significant as can be seen in Figure 1.
In the literature [9], it has been claimed that ap-

proaches such as OP- and C-NLDF do not reproduce
the two-dimensional equation of state. It has been con-
sequently attributed to this deficiency that systems with
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two-dimensional substructures like layers or shells can-
not be correctly described by these semi-phenomenological
theories. Furthermore, it has been argued that just due
to this failure these NLDFs are not able to account for
growing instabilities like that found in CBF-HNC calcu-
lations [8] for 4He films adsorbed on strongly enough sub-
strates.

2.4 Orsay-Trento nonlocal density functional

Dalfovo et al. [31] have devised a functional by making
minor modifications in the terms contributing to equa-
tion (2.13), but introducing a new term for getting an
accurate description of the static response function. The
height of the peak of χ(q) in the roton region, q ' 2 Å−1,
is important in characterizing structural properties on
the interatomic length scale (for instance, the layered
structure of helium films). Therefore, the idea of Dalfovo
et al. [31] has been to improve on the previous NLDF ap-
proaches in order to better reproduce the experimental
peak of χ(q) in the roton region.

In this case the two-body interaction was taken as the
LJ potential with a truncated core

V OT
l (r) =

4ε
[(σ
r

)12

−
(σ
r

)6
]

if r ≥ hOT,

0 if r < hOT.

(2.22)

Now the integral of the screened LJ potential gives

b′4 =
∫

drV OT
l (r) =

16π
3
σ3ε

[
1
3

(
σ

hOT

)9

−
(

σ

hOT

)3
]
·

(2.23)

The contribution depending on ρ̄(r) was split into two
terms

c4
2

[ ρ̄(r) ]γ4+1 → c′4
2

[ ρ̄(r) ]2 +
c′′4
3

[ ρ̄(r) ]3. (2.24)

In order to reproduce correctly the behaviour of χ(q) it
was added a contribution egg[∇ρ], which depends on the
gradient of the density at different points and corresponds
to a nonlocal correction to the kinetic energy. So that the
whole Orsay-Trento functional (OT-NLDF) reads

eOT
c (r) =

1
2

∫
dr′ ρ(r′)V OT

l (| r− r′ |)

+
c′4
2

[ ρ̄(r) ]2 +
c′′4
3

[ ρ̄(r) ]3 + egg[∇ρ]. (2.25)

As in the case of the zero-range DF the parameters b′4, c′4,
and c′′4 were adjusted to reproduce data at equilibrium of
saturated homogeneous liquid. The uniform limit of the
OT-NLDF expression for the correlation energy per par-
ticle is

eu =
E

N
=
b′4
2
ρ+

c′4
2
ρ2 +

c′′4
3
ρ3. (2.26)

The corresponding formulas for pressure and compress-
ibility may be derived by using the definitions of equa-
tions (2.3) and (2.4). The relevant observables at satura-
tion, i.e., the equilibrium density, the minimum energy per
particle, and the compressibility are correctly reproduced
by the set of parameters b′4, c′4, and c′′4 listed in Table 1.
The screening distance hOT = 2.190 323 Å, obtained from
equation (2.23) by using this value of b′4 is also quoted in
that table.

The complete OT-NLDF [31] expression for the
gradient-gradient contribution is

egg[∇ρ] = − ~2

4m
αs

∫
dr′ ρ(r′)F (| r− r′ |)

[
1−

∼
ρ(r)
ρ0s

]

×
(
∇ρ(r)
ρ(r)

)
·
(
∇ρ(r′)
ρ(r′)

) [
1−

∼
ρ(r′)
ρ0s

]
,

(2.27)

where
∼
ρ(r) is a weighted average of the one-body density

∼
ρ(r) =

∫
dr′ ρ(r′)F (| r− r′ |), (2.28)

and F (| r− r′ |) is a Gaussian weighting function

F (| r− r′ |) =
1

π3/2 `3
e−|r−r′|2/`2 . (2.29)

Dalfovo et al. [31] emphasized that this expression for
egg[∇ρ] is required for studying films adsorbed on strongly
attractive substrates, while for investigating free surface,
helium clusters, and films on weak binding substrates is
enough to use a simplified version of egg[∇ρ] given in the
Appendix B of [32], where

∼
ρ(r) ≡ ρ(r).

The new phenomenological parameters αs, ρ0s, and `
were fixed to reproduce the peak of χ(q) in the bulk liq-
uid. In this approach, the formula for the static response
function at zero pressure derived by using the definition
of equation (2.14) is

−χ−1(q) =
~2 q2

4m
+ ρ0

∧
Vl(q) + c′4 ρ

2
0

[
2
∧
W(q) +

∧ 2

W (q)
]

+ 2 c′′4 ρ
3
0

[
∧
W(q) +

∧ 2

W (q)
]

− ~2

2m
αs ρ0

(
1− ρ0

ρ0s

)2

q2 e−q
2`2/4. (2.30)

The obtained values of αs, ρ0s, and ` are given in Table 1.
The χ(q) calculated by using equation (2.30) are displayed
in Figure 1 of [31] showing an excellent agreement with the
experimental data of [27].

In order to complete the comparison among the con-
tributions provided by different screenings of the LJ po-

tential, we also evaluated
∧
V scr

l (q) for this OT-NLDF. The
result is plotted in Figure 1 and indicates that the differ-
ences with previous approaches are not very important.
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3 The case of planar symmetry

When the external potential depends only on the coordi-
nate z normal to the surface, i.e., Usub(r) ≡ Usub(z), the
Hartree-like equation (1.4) takes the form (2.5). Under
such conditions the system exhibits a planar symmetry
for which the one-body density satisfies ρ(r) ≡ ρ(z). For
this geometry, it is useful to define the surface coverage as
the number of particles per unit area

nc =
N

A
=
∫ ∞
−∞

dz ρ(z). (3.1)

3.1 Energy per particle as a function of coverage

Since in the present work we shall focus the attention
on free slabs of liquid 4He, the external field is taken to
be zero, Usub(z) ≡ 0. Consequently the density profile
ρ(z) determined from solutions of the Hartree-like equa-
tion (2.5) is symmetric at z = 0. For this geometry the
energy per particle becomes

e =
Egs

N
=

1
nc

[
~2

2m

∫ ∞
−∞

dz

(
d
√
ρ(z)

dz

)2

+
∫ ∞
−∞

dz ρ(z) ec(z)

]
. (3.2)

The expressions for the correlation energy per particle,
ec(z), provided by each one of the different DF approaches
discussed above are given in the Appendix.

3.2 Treatment of the energetics

The energetics of free planar films of 4He was analyzed
by using an improved version of the formalism adopted in
a previous paper [14] for studying the instability of these
systems. Following the formulation devised in [33] we shall
assume that the energy per particle may be approximated
by a polynomial expansion in powers of the inverse of
coverage

e =
Egs

N
= e∞ +

∞∑
k=1

ak
nkc
· (3.3)

In fact, this parameterization is similar to that introduced
in [34] for the free energy in terms of film’s thickness.
Here the energy per particle in the limit nc → ∞, i.e.,
e∞, can be identified with eB. The physical content of
the coefficients ak may be obtained from thermodynamic
considerations.

For a single-component system of N particles which
presents a volume V and a surface of area A, the ground-
state energy at T = 0 K satisfies according to (2.11) of [35]

dEgs = −P dV + σA dA+ µdN. (3.4)

The intensive thermodynamic fields P , σA, and µ are pres-
sure, surface tension and chemical potential, respectively.
Since in the case of flat interfaces at T = 0 K the pressure
P is zero, equation (3.4) reduces to

dEgs = σA dA+ µdN. (3.5)

The formal thermodynamic definitions of σA and µ lead
to the following expressions in terms of the energy per
particle e

σA =
(
∂Egs

∂A

)
N

=
(
∂(Egs/N)
∂(A/N)

)
N

= −n2
c

∂e

∂nc
, (3.6)

and

µ =
(
∂Egs

∂N

)
A

=
(
∂(Egs/A)
∂(N/A)

)
A

= e+ nc
∂e

∂nc
· (3.7)

From these equations one gets the well-known relation

σA = nc ( e− µ ) =
Egs

A
− µnc. (3.8)

The chemical potential derived by using equa-
tions (3.3) and (3.7) becomes

µ = e∞ −
∞∑
k=2

(k − 1)
ak
nkc
, (3.9)

being independent of a1. A further simplification can be
achieved for films adsorbed on substrates occupying the
half-space z < 0. In such a case, for thick enough slabs
only the van der Waals tail of the substrate-adsorbate po-
tential, which is proportional to z−3, is relevant for the
growth of the system. In particular, it was shown in [36]
that for standard “3-9” potentials of the form

Usub(z) =
4

27D2

(
C3

z3

)3

− C3

z3
, (3.10)

in the large coverage regime the chemical potential varies
to first-order approximation as 1/d3 (d being the film’s
thickness)

µ ' e∞ −
Γ

d3
· (3.11)

Quantity Γ is mainly determined by C3 and for films filling
up the z ≥ 0 region d is usually defined in terms of the
equilibrium bulk density ρ0 as

d =
1
ρ0

∫ ∞
0

dz ρ(z). (3.12)

According to the simplest version of the Frenkel-Halsay-
Hill (FHH) model, see e.g. equation (5) of [36] which has
been derived by neglecting effects due to retardation of
the van der Waals force, Γ is directly determined by the
strength of the long-range tail of the interaction between
4He and the substrate

Γ ' ΓFHH = ∆C3 ≡ C3 − CHe
3 , (3.13)
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with CHe
3 being the C3 coefficient of a hypothetical 4He

substrate. It seems plausible to extend this result to thick
free films assuming that in absence of attractive sub-
strates, i.e., in the limit C3 → 0, the Γfrs corresponding
to a free planar surface of liquid helium would be mainly
determined by CHe

3 . An expression for the latter quantity
has been derived by Dupont-Roc and collaborators in the
limiting case of a semi-infinite system of 4He. By start-
ing from the VH(z) potential these authors showed that
the relevant term, which is common to all the above de-
scribed NLDF approaches, leads to equation (22) of [24]
where

CHe
3 ' 2

3
π ε σ6 ρ0 ' 130 K Å3. (3.14)

This value of CHe
3 should be appropriate to account for

long-range effects due to thick half-slabs of the type of
that plotted in Figures 1 and 2 of [12]. In the case of such
films the half-coverage n1/2 satisfies

n1/2 =
∫ ∞

0

dz ρ(z) = ρ0 d. (3.15)

Hence, for large systems of this kind, according to equa-
tions (3.11–3.14) the chemical potential could be approx-
imated by

µ ' e∞ + CHe
3 ρ3

0

1
n3

1/2

· (3.16)

This expression can be derived by applying the definition
of equation (3.7) to an expansion for the energy per par-
ticle similar to that of equation (2) in [37]

e ' e∞ +
a′1
n1/2

+
a′3
n3

1/2

, (3.17)

where a′2 = 0 is explicitly assumed and a′3 should satisfy

a′3 ' −
1
2
CHe

3 ρ3
0. (3.18)

In fact, the expansion in powers of 1/n1/2 written in equa-
tion (3.17) is just of the type of equation (5) of [12], which
has been used therein to study the energetics of half-slabs.
As pointed out in [14], since n1/2 = nc/2 the relation be-
tween the coefficients of the terms of order m in the ex-
pansions of equations (3.3) and (3.17) is ak = 2k a′k. In
particular, from the comparison of these expressions one
concludes that the coefficient a2 should be zero. So the
chemical potential of equation (3.9) may be rewritten as

µ = e∞ − 2
γc

n3
c

−
∞∑
k=4

(k − 1)
ak
nkc
, (3.19)

where we have separated explicitly the main contribution
due to the van der Waals tail and renamed the coefficient
a3 as

a3 ≡ γc. (3.20)

The derivation of the surface tension by applying equa-
tion (3.6) to the expansion (3.3) leads to

σA = a1 + 3
γc

n2
c

+
∞∑
k=4

k
ak

nk−1
c

, (3.21)

where, as above, it was set a2 = 0. The coefficient a1 may
be identified with the total surface tension in the limit of
infinite width

a1 = lim
nc→∞

σA = σ(tot)
∞ . (3.22)

Since a planar symmetric film has two equivalent surfaces,
the surface tension at each boarder, σs, is a half of the total
σA. Hence we may write

σs =
σA
2

= σ∞ +
3
2
γc

n2
c

+
1
2

∞∑
k=4

k
ak

nk−1
c

, (3.23)

where σ∞ = σ
(tot)
∞ /2 is the surface tension of a semi-

infinite system.
For the sake of completeness, we shall remark that the

information concerning the stability of the films is car-
ried by γc and the coefficients of higher-order terms. As
pointed out in [14], a suitable criterion for ensuring the
stability of a system is to require a positive areal isother-
mal compressibility κs. At T = 0 K this condition may be
formulated in the following way

1
κs

= A

(
∂σA
∂A

)
N

=
A

N

(
∂σA

∂(A/N)

)
N

= −nc
∂σA
∂nc

> 0.

(3.24)

It may be rewritten in terms of the incompressibility,
which has the dimension of an energy and is related to
the third-sound velocity c3

1
nc κs

= − ∂σA
∂nc

= nc
∂µ

∂nc
= mc23

= 6
γc

n3
c

+
∞∑
k=4

k(k − 1)
ak
nkc

> 0. (3.25)

It is worthwhile to stress that the incompressibility is in-
dependent of the quantities e∞ and σ∞, it depends on how
the chemical potential and the surface tension reach these
asymptotic values. Therefore, it is of interest to estimate
the magnitude of γc which for thick species should govern
the leading contribution to 1/(nc κs). An approximated
size of γc for free films may be estimated by taking into
account equations (3.14) and (3.18)

γc = a3 = 8 a′3 ' − 4CHe
3 ρ3

0 ' −
8
3
π ε σ6 ρ4

0

= − 5.43× 10−3 K Å
−6

= γ0
frf. (3.26)

After taking into account abovementioned facts, the
energy per particle may be written as

e = e∞ + 2
σ∞
nc

+
γc

n3
c

+
∞∑
k=4

ak
nkc
· (3.27)
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4 Numerical results

Let us now compare the outputs for free films obtained
from calculations carried out with DF approaches and MC
simulations. We shall pay attention to results for several
relevant quantities. Namely, the energy per particle e, the
surface tension σs, the density at the centre of the films ρc,
the half-film thickness z1/2, and the surface width W will
be examined. The central density is simply ρc = ρ(z = 0),
the half-film thickness z1/2 is defined as the distance from
the centre at which the one-body density ρ(z) reaches the
value ρ(z1/2) = ρc/2. Finally, the width W of the liquid-
vacuum interface is defined as the distance in which ρ(z)
decreases from 0.9 ρc to 0.1 ρc.

4.1 Monte Carlo data

Vallés and Schmidt [12] have performed the MC compu-
tations for free slabs of liquid 4He at T = 0 K using the
semi-empirical improved Hartree-Fock dispersion helium
potential of [10] to describe the 4He -4He interaction. Two
different techniques, the Green’s function Monte Carlo
(GFMC) and the variational Monte Carlo (VMC), were
utilized for these calculations. In the latter case, two- and
three-body factors were included as outlined in [38,39].
The simulation area was taken to be AMC = 580.6 Å2.
Both series of data for e listed in Table I of [12] are given
as a function of NMC which is the number of particles
in a half of a symmetric film (cf. Figs. 1 and 2 therein).
However, in order to facilitate the forthcoming study, for
which we shall utilize the formulas reported in the previ-
ous section, it is convenient to consider the total coverage
nc = 2NMC/AMC. Both MC series of data may be supple-
mented by including values calculated for infinite system,
i.e., e∞(GFMC) = −7.12±0.02 K (GFMC from [40]) and
e∞(VMC) = −6.69± 0.02 K (VMC result obtained for a
bulk 4He system with N = 324 in [12]). Since VMC data
exhibit systematic deviations from the GFMC ones, Vallés
and Schmidt corrected the former values shifting them by
e∞(GFMC)−e∞(VMC) (cf. Fig. 3 in [12]). Figure 2 shows
all GFMC and the corrected VMC data as a function of
the inverse of total coverage.

The definitions of the surface tension given by equa-
tions (3) and (4) of the paper by Vallés and Schmidt [12]
are different from that of equation (3.8). However, due to
the fact that equation (3) of [12], i.e.,

σ1 =
NMC

A
[ e− e∞ ] =

nc

2
[ e− µ∞ ], (4.1)

may be also evaluated with the output of DF calculations
by introducing the asymptotic value µ∞ = e∞ instead of
µ(nc) in equation (3.8), it is possible to make meaning-
ful comparisons. The MC data of σ1 taken from Table I
of [12] are plotted in Figure 3. The error bars were esti-
mated in the present work by using the standard devia-
tions of the contributing energies per particle. The observ-
ables describing the structure of the films like the half-film
thickness z1/2 and the surface width W are also listed in
Table I of [12].

Fig. 2. Comparison of energy per particle as a function
of the inverse of total coverage ν = 1/nc. Open squares
and circles are VMC and GFMC data obtained by Vallés
and Schmidt [12]. Note that the VMC values are shifted by
e∞(GFMC) − e∞(VMC) as in Figure 3 of [12]. Results calcu-
lated with the Skyrme-DF are represented by open triangles.
Full triangles, squares, and circles stand for e provided by the
OP-, C-, and OT-NLDF approaches, respectively. In addition,
the chemical potential µ yielded by solutions of equation (2.5)
with the OT-NLDF Hartree-like potential is also indicated by
full circles. Solid curves show e and µ evaluated with equa-
tions (4.3) and (3.19) by using the coefficients determined in
OT-NLDF case, while the dashed curve indicates the fit of MC
data.

Fig. 3. Comparison of surface tension as a function of the
inverse of the coverage ν = 1/nc. Open squares and circles
are VMC and GFMC values of γ1 taken from Table I of refer-
ence [12], the evaluation of the corresponding uncertainties is
explained in the text. Results calculated with the Skyrme-DF
are represented by open triangles. Full triangles, squares, and
circles stand for e provided by the OP-, C-, and OT-NLDF
approaches, respectively. In these cases the largest uncertain-
ties are of the size of the symbols. The solid and dashed curves
indicate the estimation by using equation (4.4) with the co-
efficients obtained within the OT-NLDF and Skyrme-DF for-
malisms, respectively, when data for nc ≤ 0.13 Å−2 were taken
into account. The dotted curve shows the results evaluated for
σ1 in the case of the OT-NLDF.
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4.2 Density-functional data

For getting the values of the quantities of interest for free
planar films provided by the DF approaches described
above, one has to solve the Hartree-like equation given
by equation (2.5). The expressions for the Hartree mean-
field potential, VH(z), corresponding to each one of the
different DF approaches are provided in the Appendix.
The integrodifferential problem (2.5) has been solved for
a large domain of coverages. The thicker species up to
nc = 0.65 Å−2 were evaluated in order to fill up the regime
between the largest film studied with the GFMC technique
and the largest ones computed with the VMC method. Se-
lected DF results for e are displayed in Figure 2 together
with all the MC data treated as described above. The be-
haviour of the chemical potential is illustrated by showing
in Figure 2 values obtained with the complete OT-NLDF
formalism.

Having determined e and µ from solutions of equa-
tion (2.5), we evaluated the surface tension σs as a func-
tion of coverage by using equation (3.8)

σs =
σA
2

=
nc

2
[ e− µ ]. (4.2)

In addition, σ1 was also estimated in the case of OT-
NLDF. All these results are plotted in Figure 3. On the
other hand, the quantities characterizing the structure of
the films, i.e., ρc, z1/2, and W , were also determined in
the present work at several coverages.

4.3 Analysis and discussion

All the series of energy per particle displayed in Figure 2
decrease monotonically for increasing nc and tend towards
the value eB in the limit ν = 1/nc → 0. Of course,
this behaviour is to be expected in the case of DFs be-
cause the parameters of these semi-phenomenological ap-
proaches are adjusted to reproduce saturation properties
of the bulk. It becomes clear from this figure that at
large coverages, i.e., at small ν, the agreement between
DF and MC data is excellent. Small differences appear for
ν & 5 Å2, where the energy values calculated with DF for-
malisms lie systematically slightly above the MC results.
Each set of e(nc) was fitted to the polynomial given by
equation (3.27), where at most terms up to fifth-degree
have been retained

e = e∞ + 2
σ∞
nc

+
γc

n3
c

+
a4

n4
c

+
a5

n5
c

· (4.3)

In practice, the data covering the range 0 ≤ ν . 11 Å2

(i.e., also including the value corresponding to bulk liq-
uid) were analyzed in two steps. Firstly, we fitted data of
systems with ρc > 0.75 ρ0 ' ρsp

3D to equation (4.3) setting
a5 = 0. Since the quantity ρsp

3D ' 0.16 Å−3 is the spinodal
density of bulk liquid (see, e.g., Ref. [13]), the parame-
ters determined with this procedure should account for
properties of thick slabs. The results listed Table 3 indi-
cate that species with nc ≥ 0.13 Å−2 satisfy the required

Table 3. Central density ρc and half-film thickness z1/2.

nc [Å−2] ν [Å2] ρc [Å−3] z1/2 [Å]
OT-NLDF OT-NLDF VMCa GFMCa

0.093 10.753 0.013 95 3.2 3.3 3.3
0.100 10.000 0.014 54 3.3
0.120 8.333 0.016 05 3.7
0.130 7.692 0.016 74 3.9
0.150 6.667 0.017 95 4.2
0.186 5.376 0.019 23 5.0 5.6 5.6
0.200 5.000 0.019 46 5.3
0.300 3.333 0.020 92 7.5
0.372 2.688 0.021 20 9.1 9.8 10.0
0.400 2.500 0.021 34 9.7
0.500 2.000 0.021 58 12.0
0.600 1.667 0.021 72 14.3
0.650 1.538 0.021 73 15.5
0.744 1.344 17.6
1.116 0.896 25.6
∞ 0.000 0.021 84b

a Values taken from Table I of [12].
b Value taken from Table II of [18].

condition. In the second step, all data were fitted to the
complete polynomial (4.3) with the restriction that γc has
been allowed to vary only between the limits determined
for each approach in the first adjustment. This kind of
fit was performed by using Monte Carlo techniques. For
the error analysis of the coefficients obtained from the
MC energies per particle we used the standard deviation
0.03 K quoted in Table I of [12]. In the case of the DF
approaches the error of energies per particle was assumed
to be similar to the uncertainty in the determination of
eB, i.e., 0.01 K. The extracted values of e∞, σ∞, γc, a4,
and a5 are listed in Table 2. All the results for e∞ are
consistent with eB. The values of σ∞ may be compared
with experimental data of the surface tension which are
also quoted in Table 2. Figure 2 shows the fits for MC and
OT-NLDF energy data. This drawing also shows that for
the OT-NLDF the chemical potential evaluated by using
equation (3.19) reproduces satisfactorily well the values of
µ obtained from the solution of equation (2.5). In the fol-
lowing lines we shall discuss in detail the results obtained
with the different approaches.

Let us first focus our attention on the results provided
by the GFMC + VMC data. It should be stressed that in
the original study performed in [12] the term a2/n

2
c was

retained and the coefficients a4 and a5 were set at zero,
while in the present analysis, on the basis of theoretical
grounds outlined in Section 3.2, we assumed a2 = 0 and
left free a4 and a5. The coefficients extracted by Vallés
and Schmidt are also given in Table 2. The χ2 over the
degree of freedom nf obtained in the present work from
the fit of all the MC data to the complete equation (4.3),
χ2/nf ' 5, is large and equivalent to that of [12,14]. How-
ever, the parameters determined in the current analysis
are more satisfactory than the previous ones. The present
surface tension σ∞(MC) = 0.272±0.008 K/Å2 is in much
better agreement with experimental data of [20,22] than
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the older value σ∞(MC) = 0.288 ± 0.012 K/Å2. On the
other hand, the ratio γc/γ

0
frf = 0.67±0.10 suggests a global

retardation of the van der Waals force comparable to that
found in [33] when analysing films adsorbed on solid sub-
strates.

The fit of Skyrme-DF energy data to equation (4.3)
with a5 = 0 yielded γc/γ

0
frf = 0.02± 0.06. The consistency

with zero of this result can be attributed to the fact that
this DF does not carry any information on the microscopic
interaction between 4He atoms, which tail originates the
van der Waals force responsible for γc. A further manifes-
tation of the lack of a finite-range two-body interaction
may by observed in Figure 3, where the surface tension
calculated with this DF approach attains the asymptotic
value in a different way from that exhibited by data eval-
uated with NLDF formalisms containing the LJ poten-
tial. Having marked the particular characteristic of the
Skyrme-DF, we can say that in the case of this zero-range
functional the coefficients obtained from the fitting pro-
vide a good description of the behaviour of e as well as of
σs. The latter quantity can be fairly well reproduced, as
indicated by the dashed curve in Figure 3, by utilizing the
expression

σs = σ∞ +
3
2
γc

n2
c

+ 2
a4

n3
c

+
5
2
a5

n5
c

· (4.4)

The small difference between the results for σ∞ and
σexpt

s = 0.274 ± 0.003 K/Å2 is due to the fact that, in-
deed, the parameter d4 of the functional has been fixed
in reference [18] by imposing this experimental value to a
finite slab of helium rather than to the limiting case of the
semi-infinite system.

Turning to the NLDF approaches, a glance at Table 2
indicates that in these cases the retardation of the van
der Waals force amounts about γc/γ

0
frf ' 0.3, which is

also of the order of the effect observed for films adsorbed
on some surfaces [33]. Furthermore, Figure 3 shows that
these formalisms provide reasonable predictions for the
asymptotic value of the surface tension. In particular, the
results σ∞(OT-NLDF) are consistent with the experimen-
tal data of references [20,22]. It should be emphasized that
in these NLDF theories the parameters of the functionals
are determined without using values of σexpt

s . The solid
curve in Figure 3 indicates how well the OT-NLDF re-
sults for the surface tension are reproduced by the expan-
sion of equation (4.4) when the coefficients extracted from
the fit of the energy data are used. It should be also no-
ticed that the present σ∞(C-NLDF) agree with the value
σ∞ = 0.287 K/Å2 obtained in reference [30] by fitting en-
ergy data of 4He drops. On the other hand, it is worthwhile
to mention that the results σ∞(OP-NLDF) are a bit larger
than the value σs = 0.277 K/Å2 quoted in equation (28)
of [24] because the latter quantity has been calculated for
a finite system. The pointed curve in Figure 3 shows that
the results for σ1 obtained with the OT-NLDF are slightly
larger than the MC estimates of the corresponding γ1.

Let us briefly address to the stability question by
looking at the incompressibility given by equation (3.25),
which for thick species may be written in terms of γc

and a4

1
nc κs

' 6
γc

n3
c

+ 12
a4

n4
c

=
6 γc

n3
c

(
1 +

2 a4

γc

1
nc

)
· (4.5)

It can be readily verified that, upon replacing the pairs of
values of γc and a4 listed in Table 2 corresponding to each
one of the NLDF approaches and to MC simulations, this
expression always yields negative incompressibility over
range of interest, i.e., nc ≥ 0.13 Å−2. This result confirms
that thick free planar films are unstable in agreement with
the conclusion drawn in [13,14].

In the following lines we shall examine the structure of
the films. The reader may find a comparison between den-
sity profiles obtained from Skyrme-DF, OP-NLDF, and
OT-NLDF calculations in Figure 4 of [31]. Therefore, we
do not repeat here such a kind of drawing, but instead
we directly focus the attention on the results for ρc, z1/2,
and W obtained with the DF approaches and the MC al-
gorithms. Since the central density ρc and half-thickness
z1/2 provided by the different DFs are almost the same
(see, e.g., Fig. 4 in [31]), we only include in Table 3 the
values calculated with the most recent proposal, i.e., the
OT-NLDF. The comparison of these ρc with those ex-
hibited by the systems plotted in Figure 1 and 2 of [12]
indicates a good quantitative agreement. The main fea-
ture of the central density is that for small systems it is
significantly lower than the experimental equilibrium den-
sity of the bulk 4He, ρexpt

B = ρ0 = 0.02184 Å−3, while for
increasing coverages it tends towards the saturation value.
In addition, a glance at Table 3 indicates that the values of
z1/2 obtained with the OT-NLDF approach and the MC
simulations are also in fair agreement.

We shall begin the analysis of W pointing out that
the density profiles displayed in Figure 4 of [31] clearly
indicate that the Skyrme-DF, the OP-NLDF, the C-
NLDF, and the OT-NLDF approaches give different sur-
face widths. From that graph one may conclude that the
W obtained with the Skyrme-DF is noticeably larger than
the other two. The present Figure 4 shows the behaviour of
W over the whole range of examined coverages. From this
plot one realizes that all the calculated widths with DFs
are always larger than those obtained with MC techniques.
For instance, at nc = 0.372 Å−2 (1/nc = 2.69 Å2) the
ratios of widths are W (GFMC)/W (Skyrme-DF) = 0.56,
W (GFMC)/W (C-NLDF) = 0.66, W (GFMC)/W (C-
NLDF) = 0.68 and W (GFMC)/W (OT-NLDF) = 0.73.
By looking at the trend exhibited by the data displayed in
Figure 4 one could conjecture that in the limit 1/nc →∞
all the sets of DF and MC widths would reach asymptotic
values compatible with the measured width W = 7.6+1

−2 Å
reported by Lurio et al. [41]. The large size of the exper-
imental error precludes to get any meaningful conclusion
from the comparison of asymptotic values given by differ-
ent DF approaches.

In summary, the relevant difference between the one-
body densities obtained with DF approaches and MC
methods appears at the fall out region of the film’s den-
sity, where the profiles show larger gradients in the latter
case. This feature suggests that systems calculated with
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Fig. 4. Comparison of width W as a function of the inverse
of coverage. Open squares and circles are VMC and GFMC
data taken from Table I of reference [12]. The values of the
Skyrme-DF are represented by open triangles. Full triangles,
squares, and circles stand for results provided by the OP-, C-,
and OT-NLDF approaches, respectively. The experimental
value of reference [12] is indicated by a cross with the corre-
sponding error bars. For visual purposes, the VMC and GFMC
data evaluated at the same coverage are slightly got away from
one another along the ν axis.

MC techniques are more rigid than those obtained within
the NLDF theories. We suspect that this effect is due to
the fact that DF and MC formalisms provide somewhat
different correlations between particles in the low density
region.

5 Final remarks

The fit of GFMC+VMC data to equation (4.3) yielded
good results for the parameters of the adopted expansion
for the correlation energy per particle. Perhaps, it would
be interesting to carry out new MC simulations in order
to decrease the statistical uncertainty of the energy values
for diminishing their fluctuation and, in this way, to im-
prove the χ2/nf of the adjustment. In addition, it would
be useful to have MC data for coverages in the region
0.10 < nc < 0.15 Å−2.

It is important to emphasize that, although the param-
eters of the DFs are determined for saturation conditions
the energetics displayed in Figure 2 follows the trend of
MC results until coverages at which the central density
ρc is about one half of the equilibrium value ρ0. In turn,
Figure 3 shows that the bench of values of σ∞ obtained
within the frameworks of the examined NLDF approaches
lies just above the set of experimental results. However,
due to the fact that data of σexpt

s were not used to fix
the model parameters, the extracted surface tensions σ∞
are good genuine predictions of these NLDF formalisms.
In particular, σ∞(OT-NLDF) agrees with the experimen-
tal values of references [20,22]. On the other hand, the
quenching effect on γc is similar to the global retarda-

tion of the van der Waals force found in the analysis of
adsorbed films in [33], except for the Skyrme-DF which
does not contain any realistic information on the interac-
tion between 4He atoms. We may note in passing that all
the examined NLDF approaches indicate that thick free
films of 4He are unstable in agreement with our previous
studies [7,13,14].

The relevant discrepancy found in the present work
is concerned to a structural characteristic of the films.
Figure 4 shows that, for films with coverage ranging from
nc ≈ 0.15 Å−2 up to nc ≈ 0.60 Å−2, the thicknessW of the
4He-vacuum interface calculated with DFs is always larger
than that obtained from MC simulations. The smallest
difference corresponds to the most elaborated OT-NLDF,
which reproduces better data of static response function
and gives the best value of σ∞. These results indicate that
surfaces obtained with MC methods are more rigid than
those yielded by DFs. This discrepancy suggests that the
MC and DF theories provide somewhat different correla-
tions between 4He atoms at low density regimes. There-
fore, it would be interesting to establish the extent to
which this fact could produce sizeable effects when treat-
ing systems with markedly oscillating layered structure of
the one-body density like films adsorbed onto strongly at-
tractive substrates of graphite, Mg, H2, etc. For instance,
Figure 16 in [31] shows the very important difference be-
tween results for the velocity of third sound provided by
the OP- and OT-NLDF.

Finally, we would like to stress that the detailed com-
parison performed in the present work among the results
provided by different DF approaches and with the MC
simulations is of current interest. This is due to the fact
that DF formalisms are being nowadays widely utilized for
studying inhomogeneous 4He systems because the com-
putational effort required by these calculations is feasible
to be reasonably performed with the available facilities.
For instance, the C-NLDF has been used in [42] to study
instability scenarios for doped 4He, a combination of OP-
NLDF and OT-NLDF has been applied in [43] to examine
the structure and energetics of mixed 4He-3He drops, and
the OT-NLDF has been very recently utilized in [44] to
investigate the structure and contact angle of liquid 4He
droplets adsorbed onto a Cs surface.

This work was supported in part by the Ministry of Culture
and Education of Argentina through CONICET Contract PIP
No. 4486/96 and under SIP Grant No. EX-01/TX55.

Appendix A: Hartree mean-field potentials

In this Appendix we shall give the explicit forms of the
Hartree mean-field potentials VH(z) needed for the de-
termination of the optimal local one-body density ρ(z),
because for the C- and OT-NLDF approaches they are
not provided in the literature and in the case of the OP-
NLDF one there is a misprint in equation (2.16) of the
second paper of [11].
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For planar symmetry the correlation energy per parti-
cle in the case of the zero-range Skyrme DF is

eSky
c (z) =

b4
2
ρ(z) +

c4
2
ργ4+1(z) + d4

1
ρ(z)

(
dρ(z)

dz

)2

·

(A.1)

The Hartree potential V Sky
H (z) derived by using the defi-

nition of equation (1.5) reads

V Sky
H (z) = b4 ρ(z) +

γ4 + 2
2

c4 ρ
γ4+1(z)− 2 d4

d2ρ(z)
dz2

·
(A.2)

In the case of the OP-NLDF approach the correlation
energy per particle is

eOP
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where R is the distance between two particles

R = | r− r′ |=
√
η2 + (z − z′)2, (A.4)

with η being the distance R projected onto the x-y plane

η = | η − η′ |=
√

(x− x′)2 + (y − y′)2. (A.5)

In addition, the “coarse-grained density” ρ̄(z) is
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In turn, the self-consistent potential is, in agreement with
equation (21) of [24],

see equation (A.7) above

with h = hOP.
In the C-NLDF proposal the correlation energy per

particle is
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The corresponding self-consistent potential is given by
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with h = hC = hOP.
Finally, within the framework of the OT-NLDF theory

the correlation energy per particle is

eOT
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In turn, the Hartree potential reads
see equation (A.11) above
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with h = hOT. Here I(z) is the integral
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the weighted average density
∼
ρ(z) is

∼
ρ(z) =

∫
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=
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and the weight F (| z−z′ |) is the one-dimensional function

F (| z − z′ |) =
1√
π `

e−(z−z′)2/`2 . (A.14)
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